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a b s t r a c t

A continuumphase field theory and corresponding numerical solutionmethods are developed to describe
deformation twinning in crystalline solids. An order parameter is associated with the magnitude of
twinning shear, i.e., the lattice transformation associated with twinning. The general theory addresses
the following physics: large deformations, nonlinear anisotropic elastic behavior, and anisotropic phase
boundary energy. The theory is applied towards prediction of equilibriumphenomena in the athermal and
non-dissipative limit, whereby equilibrium configurations of an externally stressed crystal are obtained
via incremental minimization of a free energy functional. Outcomes of such calculations are elastic fields
(e.g., displacement, strain, stress, and strain energy density) and the order parameter field that describes
the size and shape of energetically stable twin(s). Numerical simulations of homogeneous twin nucleation
in magnesium single crystals demonstrate fair agreement between phase field solutions and available
analytical elasticity solutions. Results suggest that critical far-field displacement gradients associatedwith
nucleation of a twin embryo of minimum realistic size are 4.5%–5.0%, with particular values of applied
shear strain and equilibrium shapes of the twin somewhat sensitive to far-field boundary conditions and
anisotropy of twin boundary surface energy.

Published by Elsevier B.V.
1. Introduction

Phase field models have been successfully applied towards
many problems in continuumphysics. At each point in the problem
domain, one or more phase field variables describe the state
of the substance. Conserved phase field variables are typically
related to composition, e.g., molar or mass fractions of atoms or
molecules. Non-conserved variables include, but are not limited
to, order parameters associated with crystal structure, e.g., its
symmetry and/or lattice orientation. The present work deals
only with non-conserved variables, i.e., order parameters. In this
context, the term ‘‘phase’’ denotes a certain crystal structure or
lattice configuration. In regions of uniformphase, order parameters
take on discrete values of zero or one. In interfacial regions,
order parameters enable interpolation between pure phases. In
addition to depending on usual mechanical and thermal state
variables (e.g., strain and temperature), the local free energy
density of a substance generally depends on local value(s) of
order parameter(s) and spatial gradients of order parameter(s).
Such a prescription enables representation of surface energies of
phase boundaries associated with order parameter gradients in
interfacial regions.

∗ Corresponding author.
E-mail address: john.d.clayton1@us.army.mil (J.D. Clayton).

0167-2789/$ – see front matter. Published by Elsevier B.V.
doi:10.1016/j.physd.2010.12.012
Pioneering treatments of thermodynamics and kinetics of het-
erogeneous material systems in the context of phase field models
were forwarded, respectively, by Cahn and Hilliard [1] and Allen
and Cahn [2]. A fundamental ansatz [2] often prescribed in tra-
ditional phase field modeling is that a material system will tend
to evolve towards a state of minimum free energy, subject to
boundary constraints imposed on the system. Concepts for mod-
eling multiphase systems were advanced by Steinbach et al. [3]
and Steinbach and Apel [4]. Fried and Gurtin [5] and Gurtin [6]
developed order parameter theories incorporating configurational
forces ormicro-force balances in the context of geometrically non-
linear continuummechanics and thermodynamics. Review articles
are available that describe various numerical techniques and appli-
cations [7,8].

In the presentwork, phase field theory is used to describe defor-
mation twinning, also known as mechanical twinning, defined as
twinning induced by mechanical stresses [9–11]. Hereafter defor-
mation twinning is simply referred to as ‘‘twinning’’. The transfor-
mation strain associated with twinning is a simple shear. Across
the habit plane, the orientation of the Bravais lattice differs by a
reflection or rotation depending on the kind of twin under consid-
eration. The sheared and re-oriented crystal is termed the ‘‘twin’’,
while the region of crystal that maintains its original orientation is
termed the ‘‘parent’’ or the ‘‘matrix’’. Twinning often takes place by
coordinated movement of partial dislocations (i.e., twinning dislo-
cations) and/or shuffles of some but not all atoms comprising the

http://dx.doi.org/10.1016/j.physd.2010.12.012
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:john.d.clayton1@us.army.mil
http://dx.doi.org/10.1016/j.physd.2010.12.012
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twin. A finite energy can be associated with the twin boundary,
typically estimated on the order of the appropriate stacking fault
energy [12]. More generally, the interfacial energy of a growing or
shrinking twin also includes elastic and core energies of twinning
dislocations comprising such interfaces [9,13,14].

Continuum mechanics models for deformation twinning have
been developed in the context of crystal plasticity theory [15,16],
wherein at each continuum material point, the volume/mass
fraction of a particular twin system is evolved via a kinetic
relation usually involving a resolved shear stress criterion.
Intended goals of such models include predictions of macroscopic
stress–strain behavior and crystallographic texture. These models
are generally unable to predict detailed twin morphologies at the
nanometer scale. Sharp interface models have been developed
to address kinetics of twin growth [17,18]. Such models are
capable of predicting twin morphology, but application of these
theories requires prescription of kinetic laws for motion of
twin boundary interfaces, and their numerical solutions require
advanced computational methods such as level sets [18] for
resolution of surfaces of discontinuity.

Continuum phase field approaches have been suggested
elsewhere for twin growth kinetics [19,20] invoking the Time-
Dependent Ginzburg–Landau (TDGL) approach for energy
minimization. A different approach is pursued in the theory and
numerical solution techniques developed in the present paper. The
general theory developed here addresses the following physics:
potential activity of one or more twin systems, large deformations,
nonlinear elastic behavior, and elastic and surface anisotropy. Or-
der parameter(s) are related to magnitude(s) of twinning shear
(i.e., transformation strain and rotation) at a material point. Inves-
tigated in this work are equilibrium phenomena in the null tem-
perature (i.e., 0 K) and quasi-static limits that can be addressed
via energy minimization and thermodynamic stability principles.
Dissipation and time scales associated with growth kinetics are
not formally addressed, nor are acoustic waves. The present ap-
proach is somewhat analogous to lattice statics treatments of dis-
locationmechanics [21,22], wherein dislocation slip in the 0K limit
is addressedwithout consideration of atomic vibrations associated
with dissipated heat from defect motion. Quasi-static approaches
have similarly been used to study twinning in the context of empir-
ical pair potentials [23], empirical many-body potentials [24], and
density functional theory (DFT) [25]. Idesman et al. [26] developed
a quasi-static continuum approach for modeling elastic–plastic
materials undergoing martensitic phase transitions and twinning.
Koslowski et al. [27] formulated a phase field theory of disloca-
tion mechanics incorporating a non-convex Peierls potential and
energy minimization concepts. The advantage of the present ap-
proach over TDGL methods is that material parameters associated
with time scales for interfacial motion do not enter the model and
need not bemeasured experimentally. This is an important consid-
eration for modeling of deformation twinning since the propaga-
tion speedof twin boundaries canbedifficult tomeasure, and could
even be supersonic if the driving stress is sufficiently large [17,28],
though twin propagation speeds in the subsonic regime have also
been observed [29]. Modeling of twin growth kinetics at realistic
time scales in the former case would seem to require resolution of
stress dynamics, i.e., wave propagation and possible shock wave
phenomena.

The present application of the theory considers homogeneous
twinnucleation in an otherwise defect-free single crystal subjected
to far-field stress [30–33]. For given far-field boundary conditions,
the minimum stable size and equilibrium shape of a twin embryo
are dictated by competition between elastic strain energy and sur-
face energy associated with the twin–parent boundary. The theory
is implemented in a finite element code that seeksminima of a free
energy functional that depends on deformation gradient and order
parameter fields.When the surface energy is idealized as isotropic,
the only material parameters required are the characteristic twin-
ning shear and geometry (known from the crystal structure), the
elastic constants, the twin boundary energy, and a characteristic
length associated with the equilibrium twin boundary thickness.
Numerical simulations are used to investigate criteria for twin nu-
cleation and growth depending on critical resolved shear stress,
twin boundary energy, and far-field boundary constraints. Specif-
ically considered in this paper are ⟨101̄1⟩{1̄012} twins in magne-
sium (Mg) single crystals [13,14,34,23].

The remainder of this paper proceeds as follows. Section 2
presents the geometrically nonlinear phase field theory for
mechanical twinning. Section 3 presents a geometric linearization
of the theory, wherein deformations are assumed small as in
conventional linear elasticity. The model described in Section 3
is still nonlinear in the sense that the total free energy of the
material is addressed by a potential non-quadratic in the order
parameter. Section 4 presents numerical methods used to obtain
solutions of boundary value problems, specifically finite element
methodswith free energyminimization proceeding via a conjugate
gradient algorithm. Section 5 presents model predictions for twin
nucleation in Mg single crystals. Conclusions follow in Section 6.

Notation of continuum mechanics is used [5,6,10]. Real
numbers are R. Vectors and higher-order tensors are written in
bold font; scalars and components of vectors and tensors are
written in italic font. When indicial notation is used, summation
proceeds over repeated indices. To simplify notation, vectors and
tensors are referred to a fixed Cartesian frame of reference, with
indices in the subscript position. The scalar product of vectors
a and b is a · b = aAbA = a1b1 + a2b2 + a3b3 in a three-
dimensional vector space. The outer product is (a ⊗ b)AB = aAbB.
Juxtaposition implies summation over one set of adjacent indices,
e.g., (AB)AB = AACBCB. The colon denotes summation over two
sets of indices; e.g., A : B = AABBAB and (C : E)AB = CABCDECD. The
transpose of amatrix is indicated by a T superscript, e.g., AT

AB = ABA.
The inverse operation is denoted by a −1 superscript, and the
inverse-transpose operation is denoted by a −T superscript, e.g.,
A−T

= (AT )−1
= (A−1)T .

2. Geometrically nonlinear theory

In what follows in Section 2, a phase field theory is developed
for an elastic body with a single twin system and describable
by a single order parameter. Extension of the theory to elastic
bodies with multiple twin systems and multiple order parameters
is considered in Appendix B.

2.1. Order parameter

Let Ω ⊂ R3 be a reference configuration of a body and X ∈

Ω be a material point. Existence of an order parameter function
η : Ω × (0, T ) → [0, 1], where (0, T ) ⊂ R is a time interval,
is assumed. The order parameter function distinguishes between
two distinct phases: (i) the original crystal (the parent) and (ii) the
twin. Interfaces between phases represent twin boundaries. Order
parameter η exhibits the following values:

η(X, •) =

0 if X ∈ parent,
(0, 1) if X ∈ twin boundary,
1 if X ∈ twin.

(1)

According to diffuse interface theory [1,2], η is commonly
presumed at least C2 continuous with respect to X.

2.2. Kinematics

Amotion ofΩ on (0, T ) ⊂ R is given by amapχ : Ω×(0, T ) →

R3. Spatial coordinates x and reference coordinates X ∈ Ω of a
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material particle are thus related by

x = χ(X, t). (2)

The deformation gradient is

F = ∇χ, FaA = ∇Aχa, (3)

with ∇A = ∂/∂XA the material gradient. In regions of the body
where χ is at least C2 with respect to X, associated compatibility
conditions are ∇ × F = ∇ × (∇χ) = 0 where × is the vector
cross product. Associated with twinning kinematics is the simple
shear [10]

F̂ = 1 + γ0s ⊗ m (with s · m = 0 and s · s = m · m = 1). (4)

The unit tensor is 1. The unit normal to the surface of composition
(i.e., the habit plane) in the reference configuration is m. The
magnitude of twinning shear and shear direction are γ0 and s,
respectively; these are both constants in a homogeneous crystal.
Let F+ and F− denote deformation gradients in twin and parent,
respectively, both in their null strain energy reference states. The
difference between these deformation gradients is the rank-one
matrix

F+
− F−

= F̂ − 1 = γ0s ⊗ m. (5)

An interpolation procedure [20] is used to characterize the
twinning shear in the interfacial regions. Deformation gradient (3)
is decomposed multiplicatively as

F = FEFη, (6)

where

FE(X, t) = F(Fη)−1
≡ elastic deformation,

Fη[η(X, t)] ≡ stress-free twinning shear.
(7)

Superscripts E and η are descriptive labels and not numerical ex-
ponents. Specifically, twinning shear is interpolated in interfacial
regions as follows:

Fη = 1 + [ϕ(η)] γ0 s ⊗ m, (8)

where ϕ : [0, 1] → [0, 1] is a monotonically increasing function
obeying ϕ(0) = 0 and ϕ(1) = 1. A representative function also
satisfying the condition of vanishing derivative at the endpoints
[ϕ′(0) = ϕ′(1) = 0] that will be used later is a ‘‘2-3-4
polynomial’’ [35].

ϕ(η) = αη2 + 2(2 − α)η3 + (α − 3)η4, (9)

where α is a scalar constant within the limits 0 < α < 6. It
follows that in the twin, Fη(1) = 1 + γ0s ⊗ m = F̂, and in
the parent, Fη(0) = 1. Twinning preserves the volume and mass
density of a material element of the solid: det Fη = det(1 +

ϕγ0s ⊗ m) = 1 + ϕγ0s · m = 1. Fig. 1 shows an elastic
body undergoing twin nucleation. The intermediate configuration,
twinned but elastically unloaded, is labeled ‘‘fictitious’’ as a result
of incompatibility conditions ∇ × Fη ≠ 0 [36]. While the present
theory is fully three-dimensional, a two-dimensional coordinate
system is inscribed on the reference body for later reference in
Section 5. The theory presented here does not address plastic
slip, i.e., glide of full and/or partial dislocation lines and loops not
associated with twinning. Additional model features are required
to simultaneously address plastic slip and twinning [16,36].

2.3. Free energy functional

The total free energy functional for a body undergoing twinning
deformation is written as

Ψ (χ, η) =

∫
Ω

W (X, F, η) dΩ +

∫
Ω

f (X, η,∇η) dΩ, (10)
Fig. 1. Phases and kinematics of elasticity and twinning.

where W : Ω × R3×3
+ × [0, 1] → R is the elastic strain energy

density (generally nonzero in parent, twin, and interfacial regions),
andwhere f : Ω×[0, 1]×R3

→ R accounts for interfacial energy
in twin boundary regions. R3×3

+ denotes the set of 3 × 3 matrices
with positive determinant. Henceforth, the following functional
form of the strain energy per unit reference volume is used:

W (X, F, η) = W [EE(F, η), η],

EE
=

1
2
(CE

− 1) =
1
2
(FETFE − 1), (11)

with CE the elastic deformation tensor and EE the elastic strain
tensor. The elastic strain can be expressed in terms of F and η via
use of (7) and (8). For any value of order parameter η, strain energy
density vanishes at null elastic strain:

W (0, •) = 0. (12)

A quadratic form for the strain energy density is assumed.
Higher-order elastic coefficients [16,20,37] can be incorporated
by straightforward extension. Dependence of W (EE, η) on η
manifests explicitly only via anisotropic elastic coefficients. Strain
energy density and second-order moduli are written

W =
1
2
EE

: C(η) : EE, C(η) =
∂2W
∂EE∂EE


EE=0

. (13)

As usual, indices CABCD = CBADC = CCDAB and the Laue
group of the crystal dictates any other symmetries of C(0)
in the crystallographic frame [37]. For a compound twin in a
centrosymmetric structure, re-orientation matrix Q associated
with twinning is [11]

Q = 2m ⊗ m − 1. (14)

Elastic coefficients of the fully twinned crystal are related to those
of the parent by

CABCD(1) = QAEQBFQCGQDHCEFGH(0). (15)

Elastic coefficients in interfacial regions are interpolated the same
way as the twinning shear:

C(η) = C(0)+ [C(1)− C(0)]ϕ(η), (16)
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where ϕ(η) obeys (9). Different interpolators could be used for
twinning shear and elastic coefficients; for simplicity, the same
function is prescribed here for both. In the isotropic elastic
approximation, letting λ denote Lamé’s constant and µ the shear
modulus, the elasticity tensor

CABCD = λδABδCD + µ(δACδBD + δADδBC ), (17)

so that C(0) = C(1) and W (EE, η) → W (EE) does not explicitly
depend on η.

The local interfacial energy per unit reference volume follows
from the Cahn–Hilliard formalism [1]:

f (η,∇η) = f0(η)+ κ : (∇η ⊗ ∇η), (18)

with κ a symmetric second-order tensor that may generally
depend on η, but is assumed here for simplicity to have constant
components. When interfacial energy is isotropic, κ = κ1 and

f (η,∇η) = f0(η)+ κ|∇η|2. (19)

Prescribed for f0 is a standard ‘‘double-well’’ potential [5,7,20,35]:

f0(η) = Aη2(1 − η)2, (20)

with A > 0. As shown in Appendix C, in the isotropic
approximation A and κ are related to equilibrium energy per unit
area Γ and thickness l of an unstressed interface via

κ = 3Γ l/4, A = 12Γ /l. (21)

The total free energy functional Ψ of (10) becomes, using (13) and
(18),

Ψ (χ, η) =
1
2

∫
Ω

EE
: C(η) : EEdΩ

+

∫
Ω

[Aη2(1 − η)2 + κ : (∇η ⊗ ∇η)]dΩ. (22)

For isotropic elastic and interfacial energies, with trA = AAA the
trace of a second-order tensor,

Ψ (χ, η) =

∫
Ω

[(λ/2)(trEE)2 + µEE
: EE

]dΩ

+

∫
Ω

[Aη2(1 − η)2 + κ|∇η|2]dΩ. (23)

2.4. Equilibrium conditions

A stable configuration of a body undergoing twinning deforma-
tion corresponds to aminimizer of total free energy functional (10),
given certain boundary conditions. The problem of finding such
stable configuration can be expressed as

min
χ,η

Ψ (χ, η). (24)

Substantial literature [38,39] has been dedicated to assessment
of existence of minimizers such as in (24). In general, such
minimizers need not exist for arbitrary energy density functions
f and W . Moreover, existence requirements impose constraints
on functional forms of f and W . In Appendix A, existence of
minimizers of (24) is explored under assumptions of convexity or
polyconvexity of strain energy density function W and interfacial
energy density function f [40,39].

The following variational equation is posited that will suggest,
upon application of Hamilton’s principle, both weak and strong
forms of static equilibrium equations and boundary conditions:

δΨ −

∫
∂Ω

t · δχ dS −

∫
∂Ω

h δη dS = 0, (25)

where t is a mechanical traction vector per unit reference area, ∂Ω
is the boundary ofΩ , dS is a surface element of ∂Ω , and h is a scalar
conjugate force (energy per unit reference area) to variations of the
order parameter. Assuming C1-smoothness of f and taking the first
variation of the interfacial energy,

δ

∫
Ω

f dΩ =

∫
Ω

f ′

0 δη dΩ +

∫
Ω

2κ : (∇η ⊗ ∇δη) dΩ, (26)

where δη denotes an admissible variation of order parameter
η. Similarly, for W a C1-function of all its arguments, the first
variation of the strain energy is

δ

∫
Ω

W dΩ =

∫
Ω

∂W
∂η

δη dΩ +

∫
Ω

∂W
∂F

: ∇δχ dΩ, (27)

with δχ denoting an admissible variation of deformation map
χ. Combining (25)–(27) yields the weak form of the equilibrium
equations:∫
Ω


f ′

0 +
∂W
∂η


δη dΩ +

∫
Ω

2κ : (∇η ⊗ ∇δη) dΩ

+

∫
Ω

∂W
∂F

: ∇δχ dΩ −

∫
∂Ω

t · δχ dS −

∫
∂Ω

h δη dS = 0 (28)

for any admissible variations δχ and δη.
Strong forms of equilibrium equations require C2-smoothness

of bothχ andη. Application of the divergence theorem to (26) leads
to

δ

∫
Ω

f dΩ =

∫
Ω

f ′

0 δη dΩ −

∫
Ω

2κ : [∇(∇η)] δη dΩ

+

∫
∂Ω

2κ : [(∇η)⊗ n] δη dS, (29)

with n the unit outward normal to ∂Ω . The first variation of the
strain energy can be converted analogously into

δ

∫
Ω

W dΩ =

∫
Ω

∂W
∂η

δη dΩ −

∫
Ω

[
∇ ·

∂W
∂F

]
· δχ dΩ

+

∫
∂Ω

[
n ·

∂W
∂F

]
· δχ dS. (30)

Local strong forms of equilibrium equations (Euler–Lagrange
equations) follow directly from (29) and (30):

∇ ·
∂W
∂F


η

= ∇ · P = 0, ∇A
∂W
∂∇Aχa


η

= ∇APaA = 0, (31)

f ′

0 − 2κ : [∇(∇η)] +
∂W
∂η


F
= 0,

f ′

0 − 2κAB∇A∇Bη +
∂W
∂η


F
= 0,

(32)

where P is the first Piola–Kirchhoff stress tensor. Corresponding
boundary conditions are

t = Pn, ta = PaAnA, (33)
h = 2κ : (∇η ⊗ n), h = 2κABnB∇Aη. (34)

The first Piola–Kirchhoff stress also obeys

P =
∂W
∂F


η

=
∂W
∂EE

:
∂EE

∂FE
:
∂FE

∂F


η

= FEΣ(Fη)−T . (35)

The elastic second Piola–Kirchhoff stress is

Σ =
∂W
∂EE

= C : EE . (36)

The partial derivative of W [EE(F, η), η] with F fixed is computed
as

∂W
∂η


F
=
∂W
∂η


EE

+
∂W
∂EE


η

:
∂EE

∂η


F
. (37)
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From (13) and (16),
∂W
∂η


EE

=
1
2
EE

:
∂C
∂η

: EE

=
1
2
∂ϕ

∂η
EE

: [C(1)− C(0)] : EE . (38)

From (6)–(8) and (36),
∂W
∂EE


η

:
∂EE

∂η


F

= −{Σ : [CE(s ⊗ m)(Fη)−1
]} γ0

∂ϕ

∂η

= −τγ0
∂ϕ

∂η
. (39)

It can be verified that τ is a resolved shear stress on the habit plane
in the direction of twinning shear. Combining (37)–(39), phase
equilibrium condition (32) can be rewritten

f ′

0 − 2κ : [∇(∇η)] =


1
2
EE

: [C(0)− C(1)] : EE
+ τγ0


∂ϕ

∂η
. (40)

In the isotropic approximation, choosing ϕ from (9) and using f0
from (20), equilibrium condition (40) becomes
τ [αη + 3(2 − α)η2 + 2(α − 3)η3]

=
1
γ0

[Aη(1 − 3η + 2η2)− κ∇2η]. (41)

Both sides of (41) vanish identically in regions of uniform phase
where η = 0 or η = 1. For purposes of comparison, a kinetic
equation corresponding to (40) in the context of TDGL theory is
listed in Appendix D.

3. Geometric linearization

In what follows in Section 3, the theory of Section 2 is
linearized for small deformations. The linearized theory proves
useful for comparison of numerical results with analytical studies
of energetics of twin nucleation [30–33] in the context of Eshelby’s
model of elastic inclusions and inhomogeneities [41,42]. Eq. (1) still
applies.

3.1. Kinematics

In linear elasticity, the usual kinematic field variables are
displacement u(X, t) = x(X, t)− X and its gradient
β = ∇u, βAB = ∇BuA. (42)
In contrast to the geometrically nonlinear theory (Fig. 1), there
is no explicit distinction among configurations of a deformable
body. Compatibility conditions are ∇ × β = ∇ × (∇u) = 0.
Decomposition (6) is replaced with

β = βE
+ βη, (43)

whereβE is the elastic distortion andβη is the distortion associated
with twinning shear:

βη = [ϕ(η)]γ0 s ⊗ m. (44)
The symmetric elastic strain tensor is

εE(∇u, η) =
1
2
{βE

+ βET
}

=
1
2
{∇u + (∇u)T − γ0[ϕ(η)][s ⊗ m + m ⊗ s]}. (45)

3.2. Free energy

The total free energy functional for a body of reference volume
Ω is written as

Ψ (u, η) =

∫
Ω

W (∇u, η)dΩ +

∫
Ω

f (η,∇η)dΩ, (46)
where W is the elastic strain energy density and f accounts for
interfacial energy. Strain energy density and second-order elastic
moduli are

W = W [εE(∇u, η), η] =
1
2
εE

: C(η) : εE,

C(η) =
∂2W
∂εE∂εE


εE=0

.

(47)

Eqs. (14)–(21) apply in the linearized case. The total free energy
functional Ψ of (46) becomes, using (18) and (47),

Ψ (u, η) =
1
2

∫
Ω

εE
: C(η) : εE dΩ

+

∫
Ω

[Aη2(1 − η)2 + κ : (∇η ⊗ ∇η)] dΩ. (48)

For isotropic elastic and interfacial energies, this reduces to

Ψ (u, η) =

∫
Ω

[(λ/2)(tr∇u)2 + µ(∇u − γ0ϕ s ⊗ m)symm

: (∇u − γ0ϕ s ⊗ m)symm] dΩ

+

∫
Ω

[Aη2(1 − η)2 + κ|∇η|2] dΩ, (49)

where (•)symm denotes the symmetric part of a second-order
tensor, e.g., 2Asymm = A + AT .

3.3. Equilibrium conditions

The following variational equation is posited that will suggest,
upon application of Hamilton’s principle, local or strong forms of
static equilibrium equations and boundary conditions:

δΨ −

∫
∂Ω

t · δu dS −

∫
∂Ω

h δη dS = 0, (50)

where t is amechanical traction vector per unit area, dS is a surface
element of ∂Ω , and h is a scalar conjugate force to variations of the
order parameter. Taking the first variation of the interfacial energy
and applying the divergence theorem gives (29). The first variation
of the strain energy with ∇u and η independent is

δ

∫
Ω

W dΩ =

∫
Ω

∂W
∂η

δη dΩ −

∫
Ω

[
∇ ·

∂W
∂∇u

]
· δu dΩ

+

∫
∂Ω

[
n ·

∂W
∂∇u

]
· δu dS. (51)

It follows from (29) and (51) that in Ω , the Euler–Lagrange
equations are

∇ ·
∂W
∂∇u


η

= ∇ · σ = 0,

f ′

0 − 2κ : [∇(∇η)] +
∂W
∂η


∇η

= 0,
(52)

where σ is the symmetric stress tensor. Corresponding boundary
conditions are

t = σn, h = 2κ : (∇η ⊗ n). (53)

The stress also obeys, from (47),

σ =
∂W
∂∇u


η

=
∂W
∂εE

:
∂εE

∂∇u


η

=
∂W
∂εE

= C : εE (54)

The partial derivative ofW [εE(∇u, η), η] with ∇u fixed is

∂W
∂η


∇u

=
∂W
∂η


εE

+
∂W
∂εE


η

:
∂εE

∂η


∇u
. (55)
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From (16) and (47),

∂W
∂η


εE

=
1
2
εE

:
∂C
∂η

: εE
=

1
2
∂ϕ

∂η
εE

: [C(1)− C(0)] : εE . (56)

From (42)–(45) and (54),

∂W
∂εE


η

:
∂εE

∂η


∇u

= −{σ : (s ⊗ m)}γ0
∂ϕ

∂η
= −τγ0

∂ϕ

∂η
, (57)

where τ is a resolved shear stress acting on the habit plane in the
direction of twinning shear. Combining (55)–(57), the second of
equilibrium conditions (52) can be rewritten

f ′

0 − 2κ : [∇(∇η)] =


1
2
εE

: [C(0)− C(1)] : εE
+ τγ0


∂ϕ

∂η
. (58)

In the isotropic approximation, choosing ϕ from (9) and f0
from (20), (58) reduces to (41), but with τ defined in (57) rather
than (39). When elastic strains are small, Σ ≈ σ, CE

≈ 1, and the
difference between τ in (39) and (57) is on the order of twinning
shear γ0.

4. Numerical methods

The finite element method is used to seek solutions for
equilibrium or local minimum energy states of a body subjected to
boundary conditions. At each reference point X, primary solution
variables are displacement u and order parameter η. If these
solution variables and requisite material properties are known,
then all elastic field variables and interfacial quantities can be
computed via the appropriate mathematical operations given in
Sections 2 and 3.

4.1. Finite element discretization

The body of reference volume Ω is discretized into a number
of standard finite elements with shape functions Ni(X). Let
ui(t) and ηi(t) denote instantaneous values of displacement and
order parameter, respectively, at node i. Displacement and order
parameter fields are represented in a finite element context as,
respectively,

u(X, t) = ui(t)Ni(X), η(X, t) = ηi(t)Ni(X), (59)

where summation proceeds over all nodes i; however, only those
nodes supporting the element(s) containing or bounding point X
have Ni(X) ≠ 0. Material gradients of (59) follow as

F = 1 + ∇u = 1 + ui ⊗ ∇Ni, ∇η = ηi∇Ni. (60)

4.2. Energy minimization

The finite element method is employed to seek solutions of
weak forms of equilibrium conditions (28). Strong forms derived in
Sections 2.4 and 3.3 are not needed by the numerical algorithms.
Addressed in what follows are the following kinds of boundary
conditions:

∂Ω = ∂ΩM ∩ ∂ΩP

∂ΩM = ∂ΩM,D ∪ ∂ΩM,N , ∅ = ∂ΩM,D ∩ ∂ΩM,N
u(X, t) prescribed on ∂ΩM,D, t(X, t) = 0 on ∂ΩM,N


mechanical conditions

∂ΩP = ∂ΩP,D ∪ ∂ΩP,N , ∅ = ∂ΩP,D ∩ ∂ΩP,N
η(X, t) prescribed on ∂ΩP,D, h(X, t) = 0 on ∂ΩP,N


phase field conditions

(61)

Dirichlet conditions for displacement and the order parameter
are applied on ∂ΩM,D and ∂ΩP,D, respectively. Neumann condi-
tions corresponding to free surfaces are applied on ∂ΩM,N and
∂ΩP,N , respectively. The present treatment can easily be extended
to address arbitrary Neumann conditions if terms accounting for
externalwork are incorporated in the energy functionalwhose sta-
tionary points are sought.

First consider the geometrically nonlinear theory of Section 2.
The free energy functional is (22) in the general anisotropic case.
Nodal equilibrium conditions are obtained by substituting (59)
and (60) into (22) and differentiatingwith respect to nodal degrees
of freedom:

0 =
∂Ψ

∂ui
=

∫
Ω

∂W
∂F

:
∂F
∂ui

dΩ =

∫
Ω

P∇Ni dΩ

=

∫
Ω

[FE(C : EE)(Fη)−T
]∇Ni dΩ, (62)

0 =
∂Ψ

∂ηi

=

∫
Ω

∂ f
∂η

Ni dΩ +

∫
Ω

∂ f
∂∇η

· ∇Ni dΩ +

∫
Ω

∂W
∂η

Ni dΩ

=

∫
Ω

{2Aη(1 − 3η + 2η2)}Ni dΩ +

∫
Ω

(2κ∇η) · ∇Ni dΩ

+

∫
Ω


1
2
EE

: [C(1)− C(0)] : EE
− τγ0


∂ϕ

∂η
Ni dΩ. (63)

In general, solutions of (62) and (63), corresponding to stationary
points δΨ (ui, ηi) = 0, can be associated with local energy
minima, maxima, or saddle points. Energy functional Ψ (ui, ηi) is
not necessarily convex in its arguments, and may exhibit multiple
local minima, for example [20]. A conjugate gradient algorithm is
used to seek minimum energy states corresponding to (62) and
(63). Initial conditions are also prescribed as part of the solution
procedure. For example, in Section 5 an initial twinnucleus (η = 1)
is placed within a larger domain wherein η = 0 initially. Such a
systemwill not be inmechanical or phase equilibrium at the initial
time.

Now consider the linearized model of Section 3, with energy
functional (48). Global discretized equilibrium conditions are

0 =
∂Ψ

∂ui
=

∫
Ω

∂W
∂∇u

:
∂∇u
∂ui

dΩ =

∫
Ω

σ∇Ni dΩ

=

∫
Ω

(C : εE)∇Ni dΩ, (64)

0 =
∂Ψ

∂ηi
=

∫
Ω

[2Aη(1 − 3η + 2η2)]Ni dΩ

+

∫
Ω

(2κ∇η) · ∇Ni dΩ

+

∫
Ω


1
2
εE

: [C(1)− C(0)] : εE
− τγ0


∂ϕ

∂η
Ni dΩ. (65)

For the isotropic case (49) with interpolator ϕ from (9), these
reduce to

0 =
∂Ψ

∂ui

=

∫
Ω

{λ(∇ · u)1 + 2µ[∇u − γ0[αη
2
+ 2(2 − α)η3

+ (α − 3)η4]s ⊗ m]symm}∇Ni dΩ, (66)

0 =
∂Ψ

∂ηi

=

∫
Ω

{2Aη(1 − 3η + 2η2)}Ni dΩ +

∫
Ω

{2κ∇η} · ∇Ni dΩ

+

∫
Ω

{µγ0[[αη
2
+ 2(2 − α)η3 + (α − 3)η4]γ0

− 2∇u : (s ⊗ m)symm]

× [2αη + 6(2 − α)η2 + 4(α − 3)η3]}Ni dΩ. (67)
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Coupling among η, ∇η, and ∇u depicts interaction of the order
parameter and its gradient with elastic fields.

5. Application: twin nucleation in magnesium single crystals

The phase field theory and numerical methods discussed in
Sections 2–4 are applied to the problem of homogeneous twin
nucleation.

5.1. Background: homogeneous twin nucleation

Homogeneous twin nucleation is defined as the nucleation of
a twin embryo within an otherwise perfect single crystal [11].
Analytical models based on free energy variation concepts in the
context of phase transformations [42] have been applied to de-
scribe twin nucleation [11,30–33,43]. Such analytical approaches
consider nucleation of a twin embryo of idealized geometry – an
elliptical cylinder in twodimensions or an ellipsoid in three dimen-
sions – embedded in an infinite medium, with a perfectly bonded
(i.e., coherent) sharp interface separating inclusion from surround-
ing medium (i.e., the matrix). The solution technique involves si-
multaneous solution of two equilibrium equations associated with
stationary points of the total (Gibbs) free energy change associated
with twinning. These two equations yield the critical size and as-
pect ratio of the inclusion, as outlined in Appendix E. Apparently,
exact solutions are available only for approximations of linear elas-
ticity, isotropic surface energy associated with the twin boundary,
and traction boundary conditions at infinity. The solution provides
the critical size and shape of an inclusion for a given set of material
properties – elastic constants, twin boundary surface energy, and
twinning transformation shear – and far-field applied stress. At the
critical aspect ratio, the critical size corresponds to unstable equi-
librium [31,32], i.e., a saddle point on the free energy surface. At a
given far-field applied stress, a twin nucleus smaller than the criti-
cal size will tend to shrink and disappear, while one larger than the
critical size will tend to grow in an unstablemanner. The larger the
applied stress component resolved on the habit plane in the twin-
ning direction, the smaller the critical size, meaning that nucle-
ation of a small twin becomes more energetically favorable as the
resolved shear stress increases. In a real heterogeneous material at
finite temperature, nuclei of various sizes and shapes emerge as a
result of local statistical fluctuations [11,31,32]. According to the
theory, those nuclei larger than the critical size would form twins
that grow until interactions with other defects, grain boundaries,
or external surfaces occur.

In the present paper, the phase field approach is used to
model the problem of homogeneous twin nucleation. Numerical
results obtained from the phase field model, under assumptions
of geometric linearity (Section 3) and plane strain boundary
conditions, are compared with the analytical solution [30].
Such an exercise provides validation for the phase field model
and numerical methods advanced here. Additional numerical
simulations consider effects of anisotropic twin boundary (surface)
energy, variable equilibrium thickness of the twin boundary
region, various habit plane directions (i.e., lattice orientations),
and various boundary conditions (Dirichlet vs. Neumann, shear vs.
tension, and domain shapes). Such additional factors cannot all be
addressed via known analytical elasticity solution techniques.

5.2. Material

Pure magnesium single crystals are studied. Properties are
listed in Table 1 with supporting references. Magnesium exhibits
a hexagonal crystal structure and is centrosymmetric, with
c/a = 1.6235. The twinning system of consideration is the
primary one: ⟨101̄1⟩{1̄012} with twinning shear γ0 = (3 −

c2/a2)/(31/2c/a) = 0.1295 [11,34]. All five independent second-
order elastic constants [44] are listed in Table 1, though in
Table 1
Properties for pure Mg single crystals.

Parameter Value Definition Reference

c 5.200 Å lattice parameters (0 K) [13]
a 3.203 Å
γ0 0.1295 shear for ⟨101̄1⟩{1̄012} twin [11]
C11 63.5 GPa second-order elastic constants; [44]
C33 66.5 GPa extrapolated from 4.2 to 0 K
C12 25.9 GPa
C13 21.7 GPa
C44 18.4 GPa
λ 24.0 GPa Lamé constant (Voigt average)
µ 19.4 GPa shear modulus (Voigt average)
K 36.7 GPa bulk modulus (Voigt average)
ν 0.276 Poisson’s ratio (Voigt average)
Γ 117 mJ/m2 twin boundary energy [13]
l 1.0 nm equilibrium boundary thickness [20,45]
κ 0.0878 nJ/m gradient energy parameter Eq. (21)
A 1.404 GPa double-well energy parameter Eq. (21)

calculations that follow, Voigt averages [46] are used for isotropic
elastic constants. Magnesium single crystals are not strongly
anisotropic elastically [47] [C11 ≈ C33, C12 ≈ C13, and C44 ≈ (C11 −

C12)/2], so the isotropic elastic approximation appears reasonable.
Reuss averages [46] for shear and bulk moduli are 19.3 GPa and
36.7GPa, respectively, nearly identical to Voigt averages in Table 1.

Twin boundary surface energy is obtained from DFT calcula-
tions [13]. In most phase field simulations discussed later, surface
energy is assumed isotropic, following usual theoretical stud-
ies [30–33], but in one case anisotropy of the surface energy is con-
sidered. In a material coordinate systemwith axes aligned parallel
to twinning direction and habit plane normal (X1 ‖ s and X2 ‖ m),
the gradient coefficient entering (48) is written

[κ] =

[
κ11 0
0 κ22

]
. (68)

In the isotropic case, κ11 = κ22 = κ . The anisotropic case
considered later is κ11/2 = 2κ22 = κ , which favors boundaries
extended parallel to the habit plane. Recall from (C.16) that surface
energy Γ ∝ κ1/2. The rationale for anisotropic surface energy is
that twinning dislocations at a moving portion of the boundary
(i.e., an incoherent interface in the terminology of Kosevich and
Boiko [9]) would contribute core and elastic energies to the total
surface energy of the interface. In contrast, the fully formed
(i.e., coherent) twin boundary surface would have less energy
than such a moving portion because it does not contain energy of
dislocations, just stacking fault energy associated with reflection
of the lattice across the twin boundary. The anisotropic case
considered here will cause the twin to elongate in the direction
of s and shorten in the direction of m, in order to decrease the
contribution of κ11(∇1η)

2 to the energy in (48).
The equilibrium thickness l over which atoms deviate from

their ideal positions is taken as 1 nm, corresponding to about
five {1̄012} planes. This value follows from theoretical studies of
perturbed atomic coordinates in twinned hexagonal close-packed
structures [45]. The same characteristic thickness value (1 nm) has
been used in phase field models of other materials [20]. In one set
of calculations that follow, a sharper interface (l = 0.1 nm) is also
explored.

5.3. Simulations and results

Considered is a circular twin nucleus of initial radius a0 = 3 nm,
embedded in a much larger rectangular domain Ω of dimensions
L × H . Initially, a homogeneous displacement gradient field ∇u
is applied everywhere in Ω . Particular boundary conditions are
applied on ∂Ω , as discussed in more detail below. The order
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Fig. 2. Finite element mesh and initial conditions, undeformed shape.

parameter and local displacements are then relaxed according to
the conjugate gradient algorithm discussed in Section 4, as a local
stationary point (specifically, a local minimum) of the total free
energy of the system is sought. If the magnitude of the applied
displacement gradient is smaller than a critical value, the inclusion
will shrink and may even disappear, the latter scenario suggesting
that a purely homogeneous elastic response corresponds to a
minimum energy state. If the magnitude of applied displacement
is larger than a critical value, the inclusion will tend to grow until
it reaches a final size limited by interaction with the external
boundary of the domain. Growth does not necessarily imply
that a configuration with an inclusion of finite size possesses
less total energy than would the case of homogeneous elastic
deformation; i.e., the configuration associated with an inclusion
can be metastable and may constitute a relative minimum of the
total energy.

Recall from Fig. 1 that θ denotes the orientation of the
habit plane, i.e., the plane of twinning shear. Specifically, lattice
orientation vectors are, in vector form,

s = [cos θ, sin θ ]T , m = [− sin θ, cos θ ]T . (69)

Recall also from (57) that themechanical driving force for twinning
is τ = σ : (s⊗m). From (69), it follows that for a pure shear stress
state (e.g.,σ12 nonzero), τ = σ12(cos2 θ−sin2 θ); for a pure tension
stress state (e.g., σ22 nonzero), τ = σ22 sin θ cos θ .

Three kinds of boundary conditions are considered. The first
is simple shear with Dirichlet conditions on the order parameter
along ∂Ω:

{u1 = γ X2, u2 = 0, η = 0} ∀X1, X2 ∈ ∂Ω. (70)

The second is shear with Neumann (free) conditions on traction
and order parameter along the lateral edges of ∂Ω:

u1 = γ X2, u2 = 0 ∀[X1, (X2 = 0,H)],
t = σn = 0, n · ∇η = 0 ∀[(X1 = 0, L), X2].

(71)

The third is simple tension with Neumann (free) conditions on
traction and order parameter along the lateral edges of ∂Ω:

u1 = 0, u2 = εX2 ∀[X1, (X2 = 0,H)],
t = σn = 0, n · ∇η = 0 ∀[(X1 = 0, L), X2].

(72)

In (70) and (71), γ is themagnitude of applied shear, equal to twice
the applied shear strain. In (72), ϵ is the applied stretch, equal to
the applied tensile strain.

A representative finite element mesh is shown in Fig. 2. The
mesh is highly refined towards the center where the inclusion
is initially located. In simulations that follow, numerous elements
resolve the thickness of the boundary of the inclusion in
its equilibrium configuration, enabling accurate resolution of
spatial gradients of the order parameter. The mesh shown
in Fig. 2 includes 257,296 linear triangular elements. Some
simulations were repeated with a finer mesh of 503,062 linear
triangular elements; unless noted otherwise, results of interest are
insensitive to mesh density.

The initial radius of the twin embryo (inclusion) is set at a0 =

3 nm for the following reasons:

• According to the analytical sharp interface solution (Ap-
pendix E), a bifurcation from circular to elliptical shape occurs
for a radius of 3.17nm, corresponding to the equality conditions
in (E.9). Therefore, for ease of validation of the numerical tech-
nique with the analytical solution, circular inclusions with radii
smaller than 3.17 nmmust be considered. Comparison of larger
nuclei would require consideration of elliptical shapes (i.e., as-
pect ratios ω < 1) and would unduly complicate comparisons
with the analytical solution.

• According to atomic simulations of twin structures and
twinning dislocations in Mg, the minimum equilibrium size
of a ⟨101̄1⟩{1̄012} twin embryo is 17 atomic layers (3.32 nm)
thick [13,14]. Shapes of twin embryos modeled using both DFT
and empirical MD potentials [13,14] were not always circular
cylinders, but areas of twin embryos were reasonably close to
those of a circle of radius 3 nm. Unlike atomic simulations,
the present phase field simulations do not resolve individual
dislocation lines, but length scales involved are about the same.

• The equilibrium thickness l of the twin boundary is 1 nm.
If a0 ≪ 3 nm were chosen, the boundary thickness would
encroach on the center of the twin. If a0 ≫ 3 nm were
chosen, computational cost associated with resolving the twin
boundary would become prohibitive.

The analytical solution in (E.9) with inclusion radius a1 = a2 =

(AT/π)
1/2

= 3 nm corresponds to a critical stress of τ∞/µ =

0.038. This solution has been derived for an inclusion embedded
in an infinite domain, with a sharp interface between matrix
and inclusion. Thus, if effects of finite domain size and a diffuse
interface are not strong, in the present phase field simulations
applied shear γ ≫ 0.038 should result in growth of the twin,
while γ ≪ 0.038 should result in decay [for cases in which simple
shear boundary conditions (70) are applied]. For shear loading, the
applied stress is defined as the following volume average, using the
divergence theorem and the first of (52):

τA =
1
Ω

∫
∂Ω

t1X2 dS =
1
Ω

∫
Ω

σ12 dΩ. (73)

Shown in Fig. 3 are simulation results for applied shear (a)
γ = 0.01 and (b) γ = 0.10. In each case, θ = 0 and boundary
conditions (70) apply. Notice that decay [Fig. 3(a), γ = 0.01 ≪

0.038] to a homogeneous medium (no twin) and growth [Fig. 3(b),
γ = 0.10 ≫ 0.038] occur in agreement with the analytical
solution. For γ = 0.01, the twin nucleus shrinks and disappears;
for γ = 0.10, the inclusion grows until it is repelled by rigid outer
boundaries ∂Ω where η = 0 is prescribed.

Next sought are critical applied strains for twin nucleation for
the cases listed in Table 2, which encompass various boundary
conditions, material properties, and lattice orientations. Critical
strains are obtained in practice by seeding the domain with
an inclusion of initial radius a0 = 3 nm, and then applying
the deformation [γ for shear, ϵ for tension as in (70)–(72)] in
small increments of magnitude 0.001. For each increment, system
degrees of freedom relax in conjunctionwith energyminimization,
performed numerically via the conjugate gradient technique. It
was found that in the first few hundred conjugate gradient



J.D. Clayton, J. Knap / Physica D 240 (2011) 841–858 849
(a) γ = 0.01. (b) γ = 0.01.

(c) γ = 0.10. (d) γ = 0.10.

Fig. 3. Order parameter η and shear stress σ12: (a), (b) γ = 0.01 (twin disappears) and (c), (d) γ = 0.10 (twin grows).
Table 2
Phase field simulations and predicted critical strain and stress for twin nucleation.
For Case 4, κ11/2 = 2κ2 = κ . For Case 6, γC = γ /2 and τA is divided by 2. For Case
7, γC = ε and τA = σ/2, with σ the average normal stress.

Case θ

(rad)
l
(nm)

κ11/κ22 L/H Boundary Loading γC τA/µ

1 0 1 1 1 Eq. (70) shear 0.050 0.020
2 0 1 1 1 Eq. (71) shear 0.050 0.000
3 0 1 1 1.5 Eq. (70) shear 0.049 0.012
4 0 1 4 1 Eq. (70) shear 0.046 0.023
5 0 0.1 1 1 Eq. (70) shear 0.049 0.044
6 π/6 1 1 1 Eq. (70) shear 0.050 0.042
7 π/4 1 1 1 Eq. (72) tension 0.045 0.005

iterations, substantial changes in size and shape of the twin occur
in response to the prescription of an initially sharp interface, as the
interface diffuses to awidth commensuratewith parameter l of the
phase field model. In subsequent energy minimization iterations,
the twin embryo either grows or decays, with magnitude of the
rate of growth or decay versus number of iterations increasingwith
increasing strain difference from the critical strain. The minimum
applied strain for which monotonic decay (to null size) does
not occur is deemed the critical strain γC . The accuracy of γC
obtained via this method is limited to the applied strain increment
magnitude of 0.001. Qualitative profiles of total energy versus
inclusion (twin) size for two values of applied shear are shown in
Fig. 4. At a given shear γ , when a < aC the twin will tend to shrink
and disappear, following the energy surface downhill to the left.
When a > aC the twin will tend to grow until impeded by external
boundaries, following the energy surface downhill to the right. For
each of the simulation cases considered in Table 2, application of
shear γ = γC − 0.001 resulted in shrinkage and disappearance of
the initial twin nucleus of radius 3 nm.
Fig. 4. Sketch of systemenergy versus inclusion size for twovalues of applied shear.

Critical strains γC and corresponding average shear stresses τA
are listed in Table 2. For cases 1–5, critical stresses are defined
as volume averages τA in (73) at the applied strain corresponding
to growth. For case 6 (shear, θ = π/6), results in Table 2 are
normalized viamultiplication by the factor (cos2 θ−sin2 θ) = 1/2
to enable comparison with cases 1–5. For case 7 (tension, θ =

π/4), critical strain and stress are defined respectively as γC = ε
and τA = (sin θ cos θ)


Ω
σ22 dΩ = σ/2.

Fig. 5 shows equilibrium order parameter contours for each
simulation at the applied critical strain. Fig. 6 shows corresponding
shear stresses. For cases 1–6, the local shear stress shown is σ12; for
case 7, the stress shown is that acting on a 45◦ plane, (σ22−σ11)/2.
The following observations from Table 2 and Figs. 5 and 6 are
noteworthy:
Case 1. The equilibrium shape of the twin embryo is non-circular
and slightly concave as a result of the applied deformation and
boundary conditions. The twin grows horizontally until repelled
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

(e) Case 5. (f) Case 6.

(g) Case 7.

Fig. 5. Order parameter η at applied critical strains corresponding to Table 2: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, (f) Case 6 and (g) Case 7.
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

(e) Case 5. (f) Case 6.

(g) Case 7.

Fig. 6. Shear stress at applied critical strains corresponding to Table 2: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, (f) Case 6 and (g) Case 7.
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Fig. 7. Profiles of order parameter along horizontal mid-plane X2 = H/2 and
vertical mid-plane X1 = L/2 for Case 1 (isotropic surface energy) and Case 4
(anisotropic surface energy).

by the lateral boundaries at X1 = 0, L. The critical shear
displacement gradient γC = 0.05. The applied average shear stress
is significantly smaller than the stress that would be obtained for a
homogeneous elastic slabwith no inclusion, i.e., τA/(µγC ) ≈ 0.4 <
1. Fig. 7 shows the value of the order parameter along reference
coordinates measured from the center of the inclusion: X2 = H/2
(the horizontal mid-plane) and X1 = L/2 (the vertical mid-plane).
FromFig. 7, along eithermid-plane, the thickness of the region over
which 0.1 . η . 0.9 is very close to parameter l = 1 nm.
Case 2. Here the lateral boundaries are assigned free Neumann
conditions. The twin grows horizontally until it fully spans the
domain. The applied critical strain γC = 0.05 is identical to that
of Case 1, but the average stress is negligible: τA/(µγC ) ≈ 0. The
transformation strain and rotation of twin fully accommodate the
imposed shear deformation, and local shear stresses vanish except
at a few locations near twin boundaries, as is clear from Fig. 6(b).
Case 3. The equilibrium shape of the twin embryo is longer in the
horizontal (X1) direction, but otherwise is similar to that of Case 1.
The applied critical strain γC = 0.049 is slightly smaller than that
of Case 1 (see Table 2), and the ratio of average stress to critical
strain is τA/(µγC ) ≈ 0.24. Increasing the aspect ratio L/H of the
domain from 1 to 1.5 apparently has a small effect on the critical
strain for homogeneous nucleation.
Case 4. The equilibrium shape of the twin embryo is wider (in the
X1-direction) and flatter (in the X2-direction) than that of Case 1, as
is clear from profiles of the order parameter in Fig. 7. The thickness
of the twin boundary is larger along the left and right (shorter)
sides and smaller along the top and bottom (longer) sides, as also
quantified in Fig. 7. In contrast to the isotropic cases (e.g., Case 1),
prescription of anisotropic surface energy (κ11/2 = 2κ22 = κ)
results in a convex rather than concave shape. The applied critical
strain γC = 0.046 is smaller than that of Case 1, and the ratio of
average stress to critical strain is larger: τA/(µγC ) ≈ 0.5.
Case 5. The equilibrium shape of the twin embryo is that of a
parallelogram, confined to the center of the domain where the
mesh is sufficiently refined to resolve the twin boundary interface.
The thickness of the interface ismuch smaller than that of Case 1, in
agreement with parameter choice l = 0.1 nm. The applied critical
strain γC = 0.049 is very close to that of Case 1, and the average
shear stress τA/(µγC ) ≈ 0.9. Shear stress concentrations of 1.5GPa
arise at four corner locations along the twin–matrix interface. For
this case only, the equilibrium shape is mesh sensitive. The critical
strain is not deemedmesh sensitive, however, since applied strains
γC < 0.049 resulted in decay and disappearance of the initial twin
embryo.
Case 6. The equilibrium shape of the twin embryo differs from
that in Case 1; here, the twin appears rotated such that one axis,
Fig. 8. Interpolation function of (9) [35].

in reference coordinates, is aligned normal to the direction s of
twinning shear (30◦ from horizontal). The applied critical strain
γC = γ /2 = 0.050 is identical to that of Case 1, and τA/(µγC ) ≈

0.84. The applied shear stress is larger in Case 6 than in Case 1
because the applied shear γ here is 0.10 rather than 0.05.
Case 7. The equilibrium shape of the twin embryo differs drastically
from that in Case 1. The twinned region is large and nearly
symmetric about vertical mid-plane X1 = L/2. The applied critical
tensile strain γC = ε = 0.045, the average applied stress τA =

0.005, and the ratio of average stress to critical strain τA/(µγC ) ≈

0.11.
In results discussed thus far, interpolation function ϕ of (9) [35]

is prescribed as α = 3. Exploratory simulations were also
conducted with α = 1 and α = 5; corresponding interpolation
functions are plotted in Fig. 8. Results of interest are not
substantially different with different choices of α. For example, as
shown in Fig. 9(a), profiles of the order parameter versus distance
from the inclusion along mid-planes X1 = L/2 and X2 = H/2 do
not depend strongly on α; profiles shift only slightly to the left
(i.e., towards the inclusion center) with increasing α. The middle
value explored, α = 3, for which (9) degenerates to a cubic
polynomial, provides the anti-symmetry conditions ϕ(1 − η) =

1−ϕ(η) andwould seemmost physically appropriate formodeling
flat interfaces. For α = 1, 3, or 5, profiles of transformation shear
ϕγ0 are indistinguishable in Fig. 9(b).

5.4. Discussion

Results in Section 5.3, Table 2, and Figs. 5 and 6 suggest
the following trends regarding nucleation of a twin embryo of
minimum initial radius 3 nm:

• The critical far-field (i.e., applied) shear displacement gradient
for nucleation and growth is 0.045 ≤ γC ≤ 0.050, and appears
fairly insensitive to type of boundary condition (i.e., Dirichlet
or Neumann in (70) or (71)), aspect ratio of the domain Ω ,
surface energy anisotropy κ11/κ22, twin boundary thickness l,
and initial lattice orientation θ .

• For shear loading conditions perfectly aligned with the
geometry of the twin system (θ = 0), the average shear
stress after nucleation and growth is 0 < τA/µ ≤ 0.044, is
smaller than that corresponding to what would be observed
for homogeneous elastic shear (i.e., for no twin), and can be
sensitive to type of boundary condition.

• Equilibrium and near-equilibrium shapes of twins are non-
circular and are sensitive to surface energy anisotropy ratio
κ11/κ22, twin boundary thickness parameter l, boundary
conditions, and loading mode (e.g., shear or tension).

Table 3 compares twin nucleation criteria resulting from the
present simulations with those of other studies. The lower bound
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Fig. 9. Profiles of (a) order parameter η and (b) twinning shear ϕγ0 along vertical
(X1 = L/2) and horizontal (X2 = H/2) mid-planes for Case 1 (γ = 0.05) for
different values of interpolation parameter α.

Table 3
Critical shear deformation for twin nucleation or growth: comparison with other
models.

Model Reference Remarks γC

Phase field This work Simulations 1–7 [ Table 2] 0.045–0.050
Elastic inclusion [30] Analytical solution,

infinite medium
0.038

Theoretical stress [25,48] γC = γ0/(2π) 0.021
Atomistic
calculation

[23,24] Glide of
1/17[101̄1](1̄012)

0.004

partial dislocation

on the present results is in fair agreement with the analytical
model of Lee and Yoo [30] outlined in Appendix E, where here
the notation γC = τ∞/µ. Differences between phase field
results and the analytical elasticity solution of Appendix E are
apparently due to resolution of finite boundary conditions and
finite interfacial thickness in the former. The lower bound on
critical shear strain obtained through the phase field approach
exceeds that from ‘‘theoretical strength’’ γ0/(2π) associated with
motion of twinning partial dislocations [25,48], and far exceeds
the stress from empirical lattice statics calculations [23,24]. The
latter lattice statics approaches consider motion of a single partial
dislocation in a long planar twin boundary interface and do not
account for the finite size and curved shape of the twin nucleus.
This may account for the discrepancies in values between atomic
simulation results and the first two models listed in Table 3.

Further qualitative agreement between the present model and
analytical elasticity solutions is apparent upon consideration of
simulation results in Fig. 3 and the sketch in Fig. 4. Recall that
γC corresponds to an unstable equilibrium point, i.e., a saddle
point on the energy surface parameterized in terms of both
size and shape of the inclusion. At the saddle point, the total
energy is minimized with respect to shape, but maximized with
respect to size [31,32]. In agreement with the analytical solution
of Appendix E, applied strains less than (or greater than) the
critical strain result in unstable decay (or growth) of the twin
embryo. The saddle point configuration is not attained in the
conjugate gradient calculations (witness complete disappearance
or substantial growth of inclusions in Fig. 3) because the algorithm
seeks energy minima rather than saddle points. Recall that the
total free energy is a non-convex functional of the order parameter,
as is obvious from the contribution of the double-well potential
function in (20). It is expected that (28) may exhibit one, many, or
no stationary points (i.e., minima, maxima, and/or saddle points),
as is characteristic of phase change problems involving non-convex
free energy functionals [20,31]. Examination of the rate of change
of total free energy versus iterations for each simulation indicate
that, after a sufficient number of conjugate gradient iterations, the
state thus attained corresponds to a local, and possibly global free,
energy minimum. The same end result could presumably, but not
necessarily, be obtained via use of a kinetic approach to evolve the
order parameter such as (D.3) of Appendix D, wherein the right
side of (D.3) vanishes at every material point in the domain in
the equilibrium state when a stationary condition on the total free
energy has been attained.

Remarks regarding assumptions and limitations of the present
phase field approach are in order. The general theory developed
in Section 2 accounts for geometric nonlinearity (i.e., large
deformations) and anisotropy. Simulations presented in Section 5
incorporate geometric linearity (Section 3) and isotropic elastic
constants. Comparison of (39) with (57) shows that, when
elastic strains are small, the difference in driving force for
twinning τ between geometrically nonlinear and linear theories
is a factor of (Fη)−1, which in turn is on the order of twinning
shear γ0, 0.1295 for the twin system under consideration in Mg
(Table 1). The difference between the two theories would be
more severe in cubic crystals, where for the usual twinning mode,
γ0 = 2−1/2. As remarked in Section 5.1, anisotropy of elastic
constants in Mg is low [47]. Furthermore, atomic simulations have
demonstrated qualitative and reasonably quantitative agreement
for many features of twins in hexagonal crystals modeled using
pair potentials [23] which cannot correctly describe the five
independent anisotropic elastic constants, and using many-body
potentials [24] which can correctly describe anisotropic elastic
constants. The present phase field method does not enable
resolution of atomic details of defect structures afforded by
quantum or molecular mechanics models. However, a major
advantage of the present approach is that very few material
parameters are needed: at minimum, two elastic constants and
two other constants related to twin boundary energy and twin
boundary thickness. Furthermore, the same continuum theory can
be used to address systems of much larger size than can be treated
using discrete atomic techniques, so long as the numerical grid is
sufficient to resolve gradients of the order parameter at interfaces.
The presentwork has considered only a 2D idealization of twinning
in Mg. Real deformation processes can involve three spatial
dimensions and multiple twin systems, up to six ⟨101̄1⟩{1̄012}
systems in Mg [34]. Future work may consider 3D simulations and
multiple twins, following the theory in Appendix B.

6. Conclusions

A nonlinear theory has been developed to address mechani-
cal twinning. The general theory accounts for large deformations
with a focus on equilibrium thermodynamics. A geometrically lin-
ear version of the theory has been implemented in finite element
simulations of homogeneous twin nucleation. The application ap-
pears to be the first documented phase field study of homogeneous
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twin nucleation in Mg single crystals. Results are in fair agree-
ment with analytical solutions for critical applied strains associ-
ated with nucleation and subsequent unstable growth of a small
twin embryo. Critical shear displacement gradients for nucleation
and growth of a cylindrical twin of size 3 nm are predicted on
the order of 0.045–0.050. Numerical simulations enable consider-
ation of effects of boundary conditions, finite domain sizes, and
surface energy anisotropy not amenable to analytical solutions.
Results demonstrate that minimum applied stresses necessary for
twin nucleation and growth can be sensitive to boundary condi-
tions associated with mechanical and order parameter fields, and
that equilibrium shapes of twin nuclei can be sensitive to surface
energy anisotropy.

Appendix A. Existence of minimizers of energy functional (10)

Existence of minimizers of energy functionals (10) can be
demonstrated under conditions of convexity, quasiconvexity or
polyconvexity of the underlying energy density functions. The
present treatment is limited to convex or polyconvex energy
density functions, important classes of functions for applications.
Provided here is a brief summary of essential results; textbooks on
the calculus of variations (e.g., [39]) should be consulted for amore
comprehensive treatment.

A.1. Convex energy density functions

Let W (X, F, η) and f (X, η,∇η) be convex in F and ∇η,
respectively. In addition, let g(X, η, F,∇η) = W (X, F, η) +

f (X, η,∇η). It is easily verified that g is a convex function of
(F,∇η). Consequently, it can be shown [38,39] that problem (10)
possesses a solution provided function g satisfies the following
coercivity condition:

g(X, η, F,∇η) ≥ α(X)+ β(|F|2 + |∇η|2)p/2 (A.1)

for almost every X ∈ Ω , for every F ∈ R3×3
+ , β > 0 and ∇η ∈ R3

and for some absolutely integrable function α and p > 1. | • |

denotes the two-norm.

A.2. Polyconvex energy density functions

A function g : Rm×n
→ R̄ = R∪{+∞} is said to be polyconvex

if there exists a convex function h : Rτ(n,m) → R̄, such that

g(A) = h[T (A)], (A.2)

where T : Rm×n
→ Rτ(n,m) is defined as

T (A) = (A, adj2A, . . . , adjn∧mA). (A.3)

Here, n ∧ m = min{n,m}, adjsA denotes all s × s minors of
A ∈ Rm×n, 2 ≤ s ≤ n ∧ m, and

τ(n,m) =

n∧m−
s=1

m!n!
(s!)2(m − s)!(n − s)!

. (A.4)

In the context of conventional strain energy density functions
W : R3×3

+ → R, the assumption of polyconvexity yields the well-
known functional form W (F) = W̃ (F, cof FT , det F), where cof A
denotes the cofactor of matrix A [39,40], and where W̃ is a convex
function of its arguments.

Define u = (η,χ) and its gradient

[∇u] =

[
∇η
F

]
=

∇1η ∇2η ∇3η
F11 F12 F13
F21 F22 F23
F31 F32 F33

 . (A.5)
Let g : Ω × R4
× R4×3

→ R̄ be defined

g[X,u,∇u] = g[X, (η,χ), (∇η, F)]. (A.6)

Assume that g in (A.6) is polyconvex in ∇u. Application of
definitions (A.2)–(A.4), with n = 3, m = 4, n ∧ m = 3
and τ(n,m) = 34, yields the representation g(X,u,∇u) =

g̃(X,u,∇u, adj2∇u, adj3∇u). Array adj2∇u contains components
of cof∇uT and determinants of all 2×2 sub-matrices of∇u of type[

∇1η ∇2η
F11 F12

]
. (A.7)

Similarly, array adj3∇u contains det F and determinants of the
three 3 × 3 sub-matrices of ∇u of type

∇1η ∇2η ∇3η
F11 F12 F13
F21 F22 F23


. (A.8)

It is emphasized that g̃ is convex in its last three arguments for all
X ∈ Ω and u ∈ R4 by the polyconvexity of g .

Notions of polyconvexity become further simplified if an
additive decomposition of g is used. Take W polyconvex in F,
W (X, F, η) = W̃ (X, F, cof FT , det F, η), and f convex in ∇η;
function g is then represented as

g(X,u,∇u) = g̃(X, η, F, cof FT , det F,∇η)

= W̃ (X, F, cof FT , det F, η)+ f (X, η,∇η), (A.9)

and clearly satisfies the more general polyconvex form above.
Furthermore, since W̃ and f are both convex functions of their
appropriate arguments, g̃ is a convex function of F, cof FT , det F,
and ∇η, which, in turn, renders g polyconvex.

The existence of minimizers of (10) with g in (A.9) is assured
provided the following coercivity condition is satisfied [39]:

g(X,u,∇u) ≥ α(X)+

3−
s=1

βs|adjs∇u|
ps , (A.10)

where α is an absolutely integrable function over Ω , βs > 0,
p1 ≥ 2, p2 ≥

p1
p1−1 and p3 > 1. This condition can be expressed

more explicitly as

g(X,u,∇u) ≥ α(X)+ β1(|F|2 + |∇η|2)p1/2

+β2|cof F|p2 + β3(det F)p3 . (A.11)

Appendix B. Multiple twin systems

The theory of Section 2 is extended to account for multiple twin
systems, i.e., more than two phases. Denote scalar order parameter
fields by ηi(X, t). Let i = 0, 1, 2, . . . , n, with n + 1 the total
number of phases. For a crystal with multiple twin systems, n is
the number of twin systems, i = 0 is associated with the parent,
and i = 1, 2, . . . , n are associated with twin systems. Denote

η0 = 1 ∀X ∈ parent, ηi = 1 ∀X ∈ twin system i,
0 < ηi < 1 ∀X ∈ interfaces. (B.1)

The following constraint applies [3]:
n−

i=0

ηi(X, t) = 1. (B.2)

Order parameter ηi can be interpreted as themass fraction of phase
i at a given material point X. Twinning kinematics for a given
system i are described by the simple shear

F̂i = 1 + γ0 isi ⊗ mi (with si · mi = 0, si · si = mi · mi = 1).
(B.3)
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The unit normal to the surface of composition (i.e., the habit plane)
in the reference configuration ismi. Themagnitude of the twinning
shear and the shear direction are γ0i and si, respectively. The
deformation gradient F = ∇χ is decomposed as in (6):

F = FEFη, (B.4)

where

FE(X, t) = F(Fη)−1
≡ elastic deformation,

Fη[ηi(X, t); i = 1, 2, . . . , n] ≡ stress-free twinning shear.
(B.5)

Specifically, twinning shear is interpolated as follows:

Fη = 1 +

n−
i=1

[ϕi(ηi)]γ0isi ⊗ mi, (B.6)

where interpolation functions analogous to (9) are

ϕi(ηi) = αη2i + 2(2 − α)η3i + (α − 3)η4i , 0 < α < 6. (B.7)

Clearly Fη(ηi = 1; i > 0) = 1+γ0 isi ⊗mi = F̂i and Fη(ηi = 0∀i >
0) = 1. For a single twin system, det Fη = det (1+ϕiγ0isi ⊗mi) =

1 + ϕiγ0 isi · mi = 1, so volume is conserved. However,
d
dt
(det Fη) = (det Fη)tr[Ḟη(Fη)−1

]

≈ (det Fη)
n−

i=1

ϕ̇γ0i si · mi = 0, (B.8)

so volume is only conserved approximately by twinning when
multiple phases are present (e.g., at triple points). Strain energy
per unit reference volumeW is of the functional form

W = W (EE, ηi), (B.9)

where EE is the defined in (11). Strain energy density W always
vanishes at null elastic strain:

W (0, •) = 0. (B.10)

Strain energy density and second-order moduli are written

W =
1
2
EE

: C(ηi) : EE, C(ηi) =
∂2W
∂EE∂EE


EE=0

. (B.11)

For a compound twin in a centrosymmetric lattice,

Qi = 2mi ⊗ mi − 1, (B.12)

and elastic coefficients of twinsCi are related to those of the parent
C0 by

CiABCD = C(ηi = 1)ABCD
= QiAEQiBFQiCGQiDHC0EFGH . (B.13)

Elastic coefficients in the interface are interpolated the same way
as the twinning shear:

C(ηi) = C0 +

n−
i=1

[Ci − C0]ϕi. (B.14)

In the isotropic approximation, C0 = Ci ∀i andW does not depend
explicitly on ηi. The local interfacial energy per unit reference
volume is written as follows, extending (18):

f (ηi,∇ηi) =

n−
i=1

[f0i(ηi)+ κi : (∇ηi ⊗ ∇ηi)]

+

n−1−
i=1

n−
j=i+1

gij(ηi, ηj), (B.15)

with κi symmetric second-order tensors of material constants. A
possibility for f0i is

f0 i = Aη2i (1 − ηi)
2, (B.16)
with A a non-negative constant. The following function penalizes
more than two phases at a boundary (e.g., at triple points) [20]:

gij(ηi, ηj) = Bη2i η
2
j (1 − ηi − ηj), (B.17)

withB anon-negative constant. Energy function (B.15) degenerates
to (18) when only one twin system is present. Other possible
functions thatmight be considered are given by Steinbach et al. [3].
The total free energy functionalΨ is defined as the volume integral

Ψ =

∫
Ω

W (EE, ηi) dΩ +

∫
Ω

f (ηi,∇ηi) dΩ. (B.18)

Applying Hamilton’s principle, the following variational equation
is posited to suggest static equilibrium and boundary conditions:

δΨ −

∫
∂Ω

t · δχ dS −

n−
i=1

∫
∂Ω

hiδηi dS = 0, (B.19)

where hi is a scalar conjugate force to variation in order parameter
ηi. Taking the first variation of the interfacial energy and applying
the divergence theorem, the analog of (29) is

δ

∫
Ω

f dΩ =

n−
i=1

∫
Ω

∂ f0
∂ηi

δηi dΩ

−

∫
Ω

2κi : [∇(∇ηi)]δηi dΩ +

∫
∂Ω

2κi : [(∇ηi)⊗ n] δηi dS


+

n−1−
i=1

n−
j=i+1

∫
∂Ω

∂gij
∂ηi

δηi dΩ. (B.20)

Taking the variation of strain energywith F and ηi the independent
variables,

δ

∫
Ω

W dΩ =

n−
i=1

∫
Ω

∂W
∂ηi

δηi dΩ −

∫
Ω

[
∇ ·

∂W
∂F

]
· δχ dΩ

+

∫
∂Ω

[
n ·

∂W
∂F

]
· δχ dS. (B.21)

For admissible variations δχ and δηi, it follows that in Ω ,
Euler–Lagrange equations are

∇ ·
∂W
∂F


ηi

= ∇ · P = 0, (B.22)

∂ f0i
∂ηi

− 2κi : [∇(∇ηi)] +
∂W
∂ηi


F
+

n−
j=i+1

∂gij
∂ηi

= 0

(i = 1, 2, . . . , n). (B.23)

Boundary conditions are

t = Pn; hi = 2κi : (∇ηi ⊗ n) (i = 1, 2, . . . , n). (B.24)

Appendix C. Interfacial energy

Consider the theory of Sections 2 and 3 wherein a single order
parameter is sufficient. Twinned region and parent are separated
by a thin interface in which 0 < η < 1. The contribution of the
phase field to the free energy density, in the absence of elastic
strain energy, is written as the Taylor series expansion [1]

f (η,∇η,∇∇η, . . .) = f0(η)+
∂ f
∂∇η


0
· ∇η +

∂ f
∂∇∇η


0

: ∇∇η

+
1
2

∂2f
∂∇η∂∇η


0

: (∇η ⊗ ∇η)+ . . .

= f0(η)+ Λ · ∇η + ξ : (∇∇η)

+
1
2
ζ : (∇η ⊗ ∇η)+ . . . , (C.1)



856 J.D. Clayton, J. Knap / Physica D 240 (2011) 841–858
where zero subscripts correspond to a uniform value of the order
parameter. Here it is assumed for convenience that minima at
uniform composition occur at wells f0(0) = f0(1) = 0, and that
f0 ≥ 0; in terminology of Allen and Cahn [2],1f0 = f0(•)− f0(0) =

f0(•) − f0(1) = f0(•). The analysis is limited to centrosymmetric
structures for which

Λ = 0. (C.2)

Other coefficients can depend on the order parameter [1]. For
isotropic or cubic crystals, ξ = ξ1 and ζ = ζ1. Integrating (C.1)
overΩ and omitting higher-order terms,

Ψ =

∫
Ω

f dΩ

=

∫
Ω

[
f0 + ξ : (∇∇η)+

1
2
ζ : (∇η ⊗ ∇η)

]
dΩ. (C.3)

Applying the divergence theorem and the chain rule,∫
Ω

ξ : (∇∇η) dΩ =

∫
∂Ω

ξ : (∇η ⊗ n) dS

−

∫
Ω

(∇ · ξ) · (∇η) dΩ

= −

∫
Ω

∂ξ

∂η
: (∇η ⊗ ∇η) dΩ, (C.4)

assuming ∇η = 0 along ∂Ω [1]. Substituting (C.4) into (C.3),

Ψ =

∫
Ω

[f0 + κ : (∇η ⊗ ∇η)] dΩ, (C.5)

where

κ =


ζ

2
−
∂ξ

∂η


0

=
1
2

∂2f
∂∇η∂∇η


0
−

∂2f
∂η∂∇∇η


0
. (C.6)

For cubic or isotropic symmetry, (C.5) and (C.6) reduce to [1]

Ψ =

∫
Ω

[f0 + κ|∇η|2] dΩ,

κ =


ζ

2
−
∂ξ

∂η


0

=
1
2

∂2f
∂|∇η|2


0
−

∂2f
∂η∂∇2η


0
. (C.7)

Consider a flat interface, forwhich are sought the interfacial energy
and equilibrium thickness under stress-free conditions [1,2]. In the
present context, these are physically related, respectively, to twin
boundary energy per unit area and the thickness of the region
near the boundary where atomic positions deviate from those of
a perfect lattice. Henceforth in Appendix C, it is assumed that κ =

κ1 = constant. At equilibrium, when strain energy W vanishes,
(32) gives

∂ f0
∂η

= 2κ∇2η. (C.8)

Consider an infinitely long columnar volume with element
dΩ = A0dX having constant cross-sectional area A0 and normal
Lagrangian coordinate to the interface X . Assume that η varies only
in the X direction: η = η(X). Then (C.8) becomes

∂ f0
∂η

= 2κ
∂2η

∂X2
. (C.9)

Integrating both sides and applying the chain rule [2],∫ η(X)

0

∂ f0
∂η

dη =

∫ η(X)

0
{∂[κ(∂η/∂X)2]/∂η}dη

⇒ ∂η/∂X = (f0/κ)1/2. (C.10)
Interfacial energy per unit area Γ is defined as [1]

Γ =

∫
+∞

−∞

f dX =

∫
+∞

−∞

[f0 + κ(∂η/∂X)2] dX

= 2
∫

+∞

−∞

f0 dX = 2
∫ 1

0
(κ f0)1/2 dη, (C.11)

where limits η(X → −∞) = 0 and η(X → +∞) = 1. A
central difference approximation of the equilibrium thickness l of
the interfacial region is [1]
∂η

∂X


f0,max

≈ [η(X+)− η(X−)]/[X+
− X−

] ≈ 1/l

≈ (f0,max/κ)
1/2, (C.12)

where for a symmetric potential f0 withmaximum at themidpoint
of the interface,

f0,max = f0|X−+l/2 = f0|X+−l/2 = f0|η=1/2. (C.13)

Applying this argument to the double-well function f0 of (20) gives
the ‘‘height’’ of the well:

f0,max = f0(1/2) = A/16. (C.14)

From (C.12), the equilibrium thickness of the interface is

l ≈ (κ/f0,max)
1/2

= 4(κ/A)1/2. (C.15)

From (C.11), the equilibrium surface energy of the interface is

Γ = 2
∫ 1

0
(κ f0)1/2 dη = 2(Aκ)1/2

∫ 1

0
η(1 − η) dη

= (Aκ)1/2/3. (C.16)

Use of (C.15) and (C.16) results in κ = 3Γ l/4 and A = 12Γ /l as
listed in (21).

Appendix D. Kinetic approach

A typical approach for modeling time evolution of the order
parameter towards an equilibrium point involves replacement of
static equilibrium condition (32) with a kinetic equation, following
the TDGL formalism. Phase equilibrium can be expressed as

δψ/δη = ∂ f0/∂η − 2κ : [∇(∇η)] + (∂W/∂η)|F = 0. (D.1)

The kinetic approach [2] suggests an evolution law of the form

(∂η/∂t)|X = η̇ = −L{δψ/δη}; L = constant > 0. (D.2)

Substituting gives

η̇ = −L{∂ f0/∂η − 2κ : [∇(∇η)] + (∂W/∂η)|F}. (D.3)

This evolution equation is supplemented by initial conditions
η(X, 0) throughout domainΩ . Equilibrium is approached as η̇ →

0 [2]. A similar approach can be applied in the context of multiple
order parameters (Appendix B, [3,20]). In that case, from (B.23),
evolution laws of the following form are suggested, where Lki = Lik
is a positive definite matrix of kinetic coefficients:

η̇k = −Lki
n−

i=1


∂ f0 i
∂ηi

− 2κi : [∇(∇ηi)]

+
∂W
∂ηi


F
+

n−
j=i+1

∂gij
∂ηi


. (D.4)

Appendix E. Analytical solution, homogeneous twinnucleation

Following Lee and Yoo [30], considered in what follows are
conditions for nucleation of a two-dimensional (i.e., cylindrical)
twin embedded in an otherwise homogeneous elastic solid of
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infinite extent. The analysis of Lee and Yoo [30] builds on earlier
work of Eshelby [42] and Johnson and Cahn [49]. Similar analyses
of the Gibbs free energy change associated with twin nucleation
have since appeared [11,31–33]. The present analysis is limited to
isotropic linear elasticity, with identical elastic constants shared
by the twin (i.e., the inclusion) and the parent (i.e., the matrix).
Consider an ellipsoidal twin with semi-axes a1, a2, and a3, where
a3 → ∞ such that the ellipsoid degenerates to an infinitely
extended cylinder. The cross-sectional area of the twin is AT =

πa1a2, and the aspect ratio of the twin is ω = a2/a1 ≤ 1. The total
Gibbs free energy change per unit length of the cylinder associated
with twin nucleation is
1G = WE + ΦS − AT τ∞γ0. (E.1)
The elastic strain energy per unit length is [41]

WE = AT Sω/(1 + ω)2, S = µγ 2
0 /(2 − 2ν). (E.2)

The surface energy per unit length of the twin embryo is [30]
ΦS = 4Γ [AT/(πω)]E(k, π/2), (E.3)
where the complete elliptic integral of the second kind with k =

(1 − ω2)1/2 is

E(k, π/2) =

∫ π/2

0
(1 − k2 sin2 φ)1/2 dφ

=
π

2


1 −


1
2

2

k2 −


1 · 3
2 · 4

2 k4

3

−


1 · 3 · 5
2 · 4 · 6

2 k6

5
− · · ·


. (E.4)

The work per unit length associated with far-field loading stress
σ∞ is [30,31]
− AT τ∞γ0 = −AT [σ∞ : (s ⊗ m)]γ0. (E.5)
The critical aspect ratio and critical size for twin nucleation for
a given far-field stress σ∞ are determined by the simultaneous
stationary conditions
∂1G
∂ω

= 0,
∂1G
∂AT

= 0. (E.6)

Using (E.1)–(E.5), these two conditions can be expressed as [30]

τ∞γ0/S = ω/(1 + ω)2 + ω(ω − 1)E
× {(1 + ω)3[2ω(∂E/∂ω)− E]}

−1. (E.7)

AT = {2Γ (1 + ω)3[2ω(∂E/∂ω)− E]

× [π1/2Sω3/2(ω − 1)]−1
}
2. (E.8)

Simultaneous solution of (E.7) and (E.8) gives the critical aspect
ratioω and size, i.e., area AT ormajor semi-axis a1 = [AT/(πω)]

1/2,
of a twin nucleus for a given far-field stress τ∞. Noting the solution
is a saddle point [31,32] described by ∂2(1G)/∂ω2 > 0 and
∂2(1G)/∂A2

T < 0, it follows that the solution is unstable with
respect to changes in size of the inclusion. For a fixed aspect ratio
and fixed far-field stress, if an embryo smaller than the critical size
given by (E.8) is introduced in the matrix, it will tend to disappear,
while if it is larger than the critical size, it will tend to grow. The
greater the applied stress τ∞, the smaller the critical size, meaning
that given a statistical distribution of potential twin embryo sizes
and shapes, nucleation becomesmore feasible as the applied stress
increases [31,32]. When τ∞ exceeds the following threshold, the
solution is a circular cylinder [30]:

τ∞ ≥ 5S/(12γ0) = 5µγ0/[24(1 − ν)] : ω = 1,

AT = πΓ 2
[τ∞γ0 − S/4]−1.

(E.9)
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